Skip to main content

入门教程

声明:

本文转发自:腾讯技术工程:Stable Diffusion 新手入门手册,在原文上增加目录,作者:HkingAuditore

Stable Diffusion 介绍:2022 年发布的深度学习文字到图像生成模型。它主要用于根据文字的描述产生详细图像,能够在几秒钟内创作出令人惊叹的艺术作品,本文是一篇使用入门教程。

一、硬件要求

建议使用不少于 16 GB 内存,并有 60GB 以上的硬盘空间。 需要用到 CUDA 架构,推荐使用 N 卡。(目前已经有了对 A 卡的相关支持,但运算的速度依旧明显慢于 N 卡,参见:

Install and Run on AMD GPUs · AUTOMATIC1111/stable-diffusion-webui Wiki · GitHub

过度使用,显卡会有损坏的风险。

进行 512x 图片生成时主流显卡速度对比:

x

二、环境部署

手动部署

可以参考 webui 的官方 wiki 部署:Home · AUTOMATIC1111/stable-diffusion-webui Wiki (github.com)

stable diffusion webui 的完整环境占用空间极大,能达到几十 G。同时,webui 需要联网下载安装大量的依赖,在境内的网络环境下下载很慢,请自带科学上网工具。

  1. 安装 Python 安装 Python 3.10,安装时须选中 Add Python to PATH
  2. 安装 Git 在 Git-scm.com 下载 Git 安装包并安装。
  3. 下载 webui 的 github 仓库 按下win+r输入 cmd,调出命令行窗口。运行: cd PATH_TO_CLONE git clone https:_//_http://github.com/AUTOMATIC1111/stable-diffusion-webui.git

请把代码中的 PATH_TO_CLONE

替换为自己想下载的目录。 4. 装配模型 可在如Civitai上下载标注有CKPT的模型,有模型才能作画。下载的模型放入下载后文件路径下的models/Stable-diffusion目录。 5. 使用 双击运行 webui-user.bat 。 脚本会自动下载依赖,等待一段时间(可能很长),程序会输出一个类似 http://127.0.0.1:7860/ 的地址,在浏览器中输入这个链接开即可。详细可参见模型使用。 6. 更新 按下win+r输入 cmd,调出命令行窗口。运行: cd PATH_TO_CLONE git pull

请把代码中的: PATH_TO_CLONE

替换为自己下载仓库的目录。

整合包

觉得麻烦的同学可以使用整合包,解压即用。 比如独立研究员的空间下经常更新整合包。 秋叶的启动器 也非常好用,将启动器复制到下载仓库的目录下即可,更新管理会更方便。

x

打开启动器后,可一键启动:

x

如果有其他需求,可以在高级选项中调整配置。

x

显存优化根据显卡实际显存选择,不要超过当前显卡显存。不过并不是指定了显存优化量就一定不会超显存,在出图时如果启动了过多的优化项(如高清修复、人脸修复、过大模型)时,依然有超出显存导致出图失败的几率。

xFormers 能极大地改善了内存消耗和速度,建议开启。准备工作完毕后,点击一键启动即可。等待浏览器自动跳出,或是控制台弹出本地 URL 后说明启动成功

x

如果报错提示缺少 Pytorch,则需要在启动器中点击配置:

x

x

Stable Diffusion webui 的更新比较频繁,请根据需求在“版本管理”目录下更新:

x

同样地,也请注意插件的更新:

x

关于插件

Stable Diffusion 可配置大量插件扩展,在 webui 的“扩展”选项卡下,可以安装插件:

x

点击“加载自”后,目录会刷新,选择需要的插件点击右侧的 install 即可安装。

x

安装完毕后,需要重新启动用户界面:

x

三、功能介绍

文生图最简流程

选择需要使用的模型(底模),这是对生成结果影响最大的因素,主要体现在画面风格上。

x

在第一个框中填入提示词(Prompt),对想要生成的东西进行文字描述

x

在第二个框中填入负面提示词(Negative prompt),你不想要生成的东西进行文字描述

x

选择采样方法、采样次数、图片尺寸等参数。

x

  • Sampler(采样器/采样方法) 选择使用哪种采样器。 Euler a(Eular ancestral)可以以较少的步数产生很大的多样性,不同的步数可能有不同的结果。而非 ancestral 采样器都会产生基本相同的图像。DPM 相关的采样器通常具有不错的效果,但耗时也会相应增加。

    • Euler 是最简单、最快的
    • Euler a 更多样,不同步数可以生产出不同的图片。但是太高步数 (>30) 效果不会更好。
    • DDIM 收敛快,但效率相对较低,因为需要很多 step 才能获得好的结果,适合在重绘时候使用。
    • LMS 是 Euler 的衍生,它们使用一种相关但稍有不同的方法(平均过去的几个步骤以提高准确性)。大概 30 step 可以得到稳定结果
    • PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。
    • DPM2 是一种神奇的方法,它旨在改进 DDIM,减少步骤以获得良好的结果。它需要每一步运行两次去噪,它的速度大约是 DDIM 的两倍,生图效果也非常好。但是如果你在进行调试提示词的实验,这个采样器可能会有点慢了。
    • UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。
  • Sampling Steps(采样步数) Stable Diffusion 的工作方式是从以随机高斯噪声起步,向符合提示的图像一步步降噪接近。随着步数增多,可以得到对目标更小、更精确的图像。但增加步数也会增加生成图像所需的时间。增加步数的边际收益递减,取决于采样器。一般开到 20~30。

  • 不同采样步数与采样器之间的关系:

x

  • CFG Scale(提示词相关性) 图像与你的提示的匹配程度。增加这个值将导致图像更接近你的提示,但它也在一定程度上降低了图像质量。 可以用更多的采样步骤来抵消。过高的 CFG Scale 体现为粗犷的线条和过锐化的图像。一般开到 7~11。 CFG Scale 与采样器之间的关系:

x

  • 生成批次 每次生成图像的组数。一次运行生成图像的数量为“批次* 批次数量”。
  • 每批数量 同时生成多少个图像。增加这个值可以提高性能,但也需要更多的显存。大的 Batch Size 需要消耗巨量显存。若没有超过 12G 的显存,请保持为 1。
  • 尺寸 指定图像的长宽。出图尺寸太宽时,图中可能会出现多个主体。1024 之上的尺寸可能会出现不理想的结果,推荐使用小尺寸分辨率+高清修复(Hires fix)。
  • 种子 种子决定模型在生成图片时涉及的所有随机性,它初始化了 Diffusion 算法起点的初始值。

理论上,在应用完全相同参数(如 Step、CFG、Seed、prompts)的情况下,生产的图片应当完全相同。

  • 高清修复

x

通过勾选 "Highres. fix" 来启用。 默认情况下,文生图在高分辨率下会生成非常混沌的图像。如果使用高清修复,会型首先按照指定的尺寸生成一张图片,然后通过放大算法将图片分辨率扩大,以实现高清大图效果。最终尺寸为(原分辨率*缩放系数 Upscale by)。

  • 放大算法中,Latent 在许多情况下效果不错,但重绘幅度小于 0.5 后就不甚理想。ESRGAN_4x、SwinR 4x 对 0.5 以下的重绘幅度有较好支持。

  • Hires step 表示在进行这一步时计算的步数。

  • Denoising strength 字面翻译是降噪强度,表现为最后生成图片对原始输入图像内容的变化程度。该值越高,放大后图像就比放大前图像差别越大。低 denoising 意味着修正原图,高 denoising 就和原图就没有大的相关性了。一般来讲阈值是 0.7 左右,超过 0.7 和原图基本上无关,0.3 以下就是稍微改一些。实际执行中,具体的执行步骤为 Denoising strength * Sampling Steps。

  • 面部修复 修复画面中人物的面部,但是非写实风格的人物开启面部修复可能导致面部崩坏。

  • 点击“生成”

x

四、提示词

提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。 提示词的效果也受模型的影响,有些模型对自然语言做特化训练,有些模型对单词标签对特化训练,那么对不同的提示词语言风格的反应就不同。

提示词内容

提示词中可以填写以下内容:

  • 自然语言 可以使用描述物体的句子作为提示词。大多数情况下英文有效,也可以使用中文。避免复杂的语法。
  • 单词标签 可以使用逗号隔开的单词作为提示词。一般使用普通常见的单词。单词的风格要和图像的整体风格搭配,否则会出现混杂的风格或噪点。避免出现拼写错误。 可参考Tags | Danbooru (donmai.us)
  • Emoji、颜文字 Emoji ( ) 表情符号也是可以使用并且非常准确的。因为 Emoji 只有一个字符,所以在语义准确度上表现良好。关于 emoji 的确切含义,可以参考Emoji List, v15.0 (unicode.org),同时 Emoji 在构图上有影响。

x

对于使用 Danbooru 数据的模型来说,可以使用西式颜文字在一定程度上控制出图的表情。如::-) 微笑 :-( 不悦 ;-) 使眼色 :-D 开心 :-P 吐舌头 :-C 很悲伤 :-O 惊讶 张大口 :-/ 怀疑

提示词语法

根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号 [ , ],如:

masterpiece, best quality, ultra-detailed, illustration, close-up, straight on, face focus, 1girl, white hair, golden eyes, long hair, halo, angel wings, serene expression, looking at viewer

一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词,大致顺序如:

(画面质量提示词), (画面主题内容)(风格), (相关艺术家), (其他细节)

不过在模型中,每个词语本身自带的权重可能有所不同,如果模型训练集中较多地出现某种关键词,我们在提示词中只输入一个词就能极大地影响画面,反之如果模型训练集中较少地出现某种关键词,我们在提示词中可能输入很多个相关词汇都对画面的影响效果有限。 提示词的顺序很重要,越靠后的权重越低。关键词最好具有特异性,譬如 Anime(动漫)一词就相对泛化,而 Jojo 一词就能清晰地指向 Jojo 动漫的画风。措辞越不抽象越好,尽可能避免留下解释空间的措辞。

可以使用括号人工修改提示词的权重,方法如:

  • (word) - 将权重提高 1.1 倍
  • ((word)) - 将权重提高 1.21 倍(= 1.1 * 1.1)
  • [word] - 将权重降低至原先的 90.91%
  • (word:1.5) - 将权重提高 1.5 倍
  • (word:0.25) - 将权重减少为原先的 25%
  • (word) - 在提示词中使用字面意义上的 () 字符

( n ) = ( n : 1.1 ) (( n )) = ( n : 1.21 ) ((( n ))) = ( n : 1.331 ) (((( n )))) = ( n : 1.4641 ) ((((( n )))) = ( n : 1.61051 ) (((((( n )))))) = ( n : 1.771561 )

请注意,权重值最好不要超过 1.5。

还可以通过 Prompt Editing 使得 AI 在不同的步数生成不一样的内容,譬如在某阶段后,绘制的主体由男人变成女人。

x

语法为:

[to:when] 在指定数量的 step 后,将to处的提示词添加到提示
[from::when] 在指定数量的 step 后从提示中删除 from处的提示词
[from:to:when] 在指定数量的 step 后将 from处的提示词替换为 to处的提示词

例如: a [fantasy:cyberpunk:16] landscape 在一开始,读入的提示词为: the model will be drawing a fantasy landscape. 在第 16 步之后,提示词将被替换为:a cyberpunk landscape, 它将继续在之前的图像上计算 又例如,对于提示词为: fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25][shoddy:masterful:0.5],100 步采样, 一开始。提示词为: fantasy landscape with a mountain and an oak in foreground shoddy 在第 25 步后,提示词为: fantasy landscape with a lake and an oak in foreground in background shoddy 在第 50 步后,提示词为:fantasy landscape with a lake and an oak in foreground in background masterful 在第 60 步后,提示词为:fantasy landscape with a lake and an oak in background masterful 在第 75 步后,提示词为:fantasy landscape with a lake and a christmas tree in background masterful

提示词还可以轮转,比如

[cow|horse] in a field

在第一步时,提示词为“cow in a field”; 在第二步时,提示词为"horse in a field."; 在第三步时,提示词为"cow in a field" ,以此类推。

x

Token

实际上,程序是将输入的关键词以 Token 的形式传入模型进行计算的:

x

(Medieval astronomer using a telescope with a cosmic starry sky in the background.sketch, hand draw style, con, uncomplicated background )”转换为 Token ID 即: 263, 10789, 40036, 1996, 320, 19037, 593, 320, 18304, 30963, 2390, 530, 518, 5994, 8, 11, 263, 5269, 267, 2463, 4001, 1844, 267, 5646, 267, 569, 16621, 5994, 264

一个单词可能对应一个或多个 Token,多个单词也可能对应同一个 Token。

提示词模板

可参考Civitai | Stable Diffusion models, embeddings, hypernetworks and more中优秀作品的提示词作为模板。

类似的网站还有:

五、Controlnet

Controlnet 允许通过线稿、动作识别、深度信息等对生成的图像进行控制。

请注意,在使用前请确保 ControlNet 设置下的路径与本地 Stable Diffusion 的路径同步

x

基本流程

x

x

  • 点击 Enable 启用该项 ControlNet
  • Preprocessor 指预处理器,它将对输入的图像进行预处理。如果图像已经符合预处理后的结果,请选择 None。譬如,图中导入的图像已经是 OpenPose 需要的骨架图,那么 preprocessor 选择 none 即可。
  • 在 Weight 下,可以调整该项 ControlNet 的在合成中的影响权重,与在 prompt 中调整的权重类似。Guidance strength 用来控制图像生成的前百分之多少步由 Controlnet 主导生成,这点与[:]语法类似。
  • Invert Input Color 表示启动反色模式,如果输入的图片是白色背景,开启它。
  • RGB to BGR 表示将输入的色彩通道信息反转,即 RGB 信息当做 BGR 信息解析,只是因为 OpenCV 中使用的是 BGR 格式。如果输入的图是法线贴图,开启它。
  • Low VRAM 表示开启低显存优化,需要配合启动参数“--lowvram”。
  • Guess Mode 表示无提示词模式,需要在设置中启用基于 CFG 的引导。
  • Model 中请选择想要使用解析模型,应该与输入的图像或者预处理器对应。请注意,预处理器可以为空,但模型不能为空。

可用预处理/模型

  • canny 用于识别输入图像的边缘信息。

x

  • depth 用于识别输入图像的深度信息。

x

  • hed 用于识别输入图像的边缘信息,但边缘更柔和。

x

  • mlsd 用于识别输入图像的边缘信息,一种轻量级的边缘检测。 它对横平竖直的线条非常敏感,因此更适用于于室内图的生成。

x

  • normal 用于识别输入图像的法线信息。

x

  • openpose 用于识别输入图像的动作信息。

x

OpenPose Editor 插件可以自行修改姿势,导出到文生图或图生图。

x

  • scribble 将输入图像作为线稿识别。如果线稿是白色背景,务必勾选“Invert Input Color”

x

  • fake_scribble 识别输入图像的线稿,然后再将它作为线稿生成图像。

x

  • segmentation 识别输入图像各区域分别是什么类型的物品,再用此构图信息生成图像。

x

如果想绘制一张符合 segementation 规范的图像,可以使用以下色表绘制。 color_coding_semantic_segmentation_classes - Google 表格

x

多 ControlNet 合成

在 ControlNet 的设置下,可以调整可用 ControlNet 的数量。

x

在多个 ControlNet 模式下,结果会将输入的信息合并生成图像:

x

x

六、更多模型

模型下载

模型能够有效地控制生成的画风和内容。 常用的模型网站有:

Civitai | Stable Diffusion models, embeddings, hypernetworks and more > Models - Hugging Face > SD - WebUI 资源站 > 元素法典 AI 模型收集站 - AI 绘图指南 wiki (aiguidebook.top) > AI 绘画模型博物馆 (subrecovery.top)

模型安装

下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。 模型的类型可以通过Stable Diffusion 法术解析检测。

x

  • 大模型(Ckpt):放入 models\Stable-diffusion

x

  • VAE 模型: 一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\Stable-diffusion 或 models\VAE 目录,然后在 webui 的设置栏目选择。

x

x

x

  • Lora/LoHA/LoCon 模型:放入 extensions\sd-webui-additional-networks\models\lora,也可以在 models/Lora 目录

x

x

  • Embedding 模型:放入 embeddings 目录

x

模型使用

  • Checkpoint(ckpt)模型 对效果影响最大的模型。在 webui 界面的左上角选择使用。

x

一些模型会有触发词,即在提示词内输入相应的单词才会生效。

  • Lora 模型 / LoHA 模型 / LoCon 模型

对人物、姿势、物体表现较好的模型,在 ckpt 模型上附加使用。 在 webui 界面的 Additional Networks 下勾线 Enable 启用,然后在 Model 下选择模型,并可用 Weight 调整权重。权重越大,该 Lora 的影响也越大。 不建议权重过大(超过 1.2),否则很容易出现扭曲的结果。

x

多个 lora 模型混合使用可以起到叠加效果,譬如一个控制面部的 lora 配合一个控制画风的 lora 就可以生成具有特定画风的特定人物。 因此可以使用多个专注于不同方面优化的 Lora,分别调整权重,结合出自己想要实现的效果。

LoHA 模型是一种 LORA 模型的改进。

LoCon 模型也一种 LORA 模型的改进,泛化能力更强。

  • Embedding

对人物、画风都有调整效果的模型。在提示词中加入对应的关键词即可。大部分 Embedding 模型的关键词与文件名相同,譬如一个名为为“SomeCharacter.pt”的模型,触发它的关键词检索“SomeCharacter”。