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@ UPSIDE: Performance Goals
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UPSIDE Goals: 3 orders of magnitude in throughput, 4 orders of magnitude in
power efficiency, no loss in accuracy
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@ UPSIDE Unconventional Processing of Signals for Data Exploitation

DARPA Insight #1: Exploit the physics of emerging devices and mixed signal CMOS
to perform extremely fast, low power computation.

Front End Filtering . : . Final Result:
. Approach is being implemented in MS CMOS for near term gains . :

(Edge Detection) EEEn B g il d in MS CMOS for nea ga Filtered Image
Image feature Pixels mapped into Oscillators relax to Final energy compared against Step and repeat to Identify
from CCD array coupled oscnlators lowest energy state library of p055|ble features all Edges (in red)

..... 7] 7
%VDD ‘~-'-'-'--~- E=-]s E= N\
2 E
3x3 pixels r‘ r\ r] o 47 )
LELFF =g |Best Match: E,=E;
N X
E :
UPSIDE eliminates computationally intensive digital CMOS dot product multiplication DARPA Neovision2 —

Stanford Tower Video

DARPA Insight #2: Computational method can be applied universally to almost every
computing function in the front end of the Image Processing Pipeline

Object Detection Object Saliency/Tracking Object Classification

- — (- Dismount
BAE Systems — ARGUS IS > Cars @

Reduce ISR computational power budget from kW to W, while increasing speed >100x
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11u1)  UPSIDE ARGUS-IS Image Processing Pipeline: 40GP/s, 5W
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“Training and operation of
an integrated neuromorphic
network based on
metal-oxide memristors”,
M. Prezioso et al.,
Nature Letter,

7 May 2015, Vol. 521
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s7"TM) Sparse Adaptive Local Learning: A universal platform for
efficient sensing and analytics (U Michigan)
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Mapping The Neural Inference Module Onto
DARPA A Low-power Sparse Coding Processor

3.1 mm2 sparse coding processor in 65nm

CMOS

Inference throughput: 1.24 Gpixels/s
Learning throughput: 188 Mpixels/s
Energy: as low as 47.6 pJ/pixel

Zhengya Zhang
Michael Flynn

Evaluation boart

Distribution Statement A: Approved for Public Release, Distribution Unlimited

| 2.11mm |

Sparse
coding chip

2.11mm

-
-
|-
-2
.
»
=
2.
-
=
=
=
51
S
=
=
5
=
.
&)
=
3
=)
=
!l
=)
=
Ly
L1
&
Cll

Low spike rate translates to low power
consumption

Efficient sharing of neuron communication
enables scalable architecture

Excellent quantized performance for efficient
memory usage

Soft processing and error resilient for low power
approximate computing

Work performed under DARPA Cooperative Agreement Award HR0011-13-2-0015
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G Results: Emerging Device Characteristics

Emerging device specifications indicate that both power and frequency
data are near the projected values for UPSIDE program goal.

Spin-Torque Oscillator (STO)

Parameter Simulated Measured Projected
I Power consumption per STO 45 pW 10 uW (10mV, 1mA)
(10mv, 10 ma)
’ Au Power consumption, 16 STOs 360 uW
v Tl Nanocontact size 100 nm 40 nm
Insulator Time to phaselock, 2 STOs 3-5ns : 2.5ns
FM Frequency 10-40GHz
(CMOS dependent)
FM Footprint , unit cell 2 STOs + resistive coupling 1x5pm’
Footprint, 16 RBO cluster 2 x 20 pm’
Resonant Body Oscillator (RBO) ——
Parameter Simulated Measured Projected
TOP.w:‘fN Acoustic Bragg Reflectors ilose | Power consumption per RBO 22.5 uW 20 W
AR — o | Power consumption, 16 RBOs T 360 uW
V| | capacitor 0= T/'G Energy dissipated in coupling resistance, 2 RBOs, anti-phase 99 aJ
f A’E Acoustic Bragg Reflectors to in-phas-e tranSIent . . .
| Energy dissipated in coupling resistances, 16 RBOs, anti- 1.6f]
body contact gon'} phase to in-phase transient
@ Time to phaselock, 2 RBOs anti-phase to in-phase transient 33 ns N 3.3ns
oo e f:j\a‘j’e' Frequency 1-10GHz ~ (_11.IGHz)  10GHz
N B gate dielectric Footprint , unit cell 2 RBOs + resistive coupling 40 x 40 pm’ T
eousteresonance Footprint, 16 RBO cluster 80x160 pm”
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DARPA Deep Learning Analog Chip

Deep Learning Chip Architecture Implemented with Custom

Analog Elements

« Floating-gate analog memory for non-Boolean, probabilistic pattern
matching performing on-chip, real-time training

« Approach enables highly efficient computation for object recognition,

classification and tracking

University Tennessee press release
and news articles about chip and
DARPA UPSIDE program

Tannassee Taday
REYFS AND EVENTS FOR THE UT SUMMUNITY

Sraana Shory Topes

UT Engineers Team Up Lo Move
Analog Brain Closer to Reality

lap Headlnes @

Performance & Efficiency

J. Lu, S. Young, L. Arel, J. Holleman, "A 1TOPS/W Analog
Deep Machine-Learning Engine with Floating-Gate
Storage in 0.13um CMOS," IEEE Journal of Solid-State
Circuits, Vol. 50, Issue 1, pp. 270-281, Jan. 2015.
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DARPA SR Processing Pipeline: A Data Analysis Crisis

The “Front End” The “Back End”
UPSIDE Program Cortical Processor
Higher-Order o ..
Feature (o AZROCONON ) Decon
Extraction 9

Actionable Data/
Drowning in data, Motor Control
starved for knowledge

« Sensor data bandwidth exceeding processing capabilities, particularly for embedded
systems

« Data become more knowledge / context intensive, containing both spatial and
temporal information, as they move through the pipeline

» Current computational approaches do not adequately represent complex spatial and

temporal data, limiting the ability to effectively perform complex recognition for
important DoD tasks like anomaly detection and scenario prediction
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DPA Explosion of Data and Software Complexity

Can learning be leveraged as an efficient system construction
alternative, for system control as well as data processing?
» Expose the agent to reality rather than trying to approximate it through

programmed equations
» Learn complex and subtle relationships in the data and perform inference over
those structures Rich models allow more robust anomaly detection

» Continue learning and adaptation in situ

Global Hawk DoD Sensing: A single
— Global Hawk requires Software System Codebases
500 Mbps > 5x the total Average iPhone App (40,000)
SatCom bandwidth that
the entire U.S. military | Space Shuttle (400,000) 1 Million Lines
used during the Gulf
War [ F22 Raptor Fighter (2M)
. i . B Hubble Space Telescope (2M)
Big Data: Global Data Center Traffic Projection
s B Us Military Drone Control Software (4M) 10 Million Lines
25% CAGR 2012-2017
Cloud Data Center (35% CAGR) _ F35 Flghter 2013 (24M) o )
Traditional Data Center (12% CAGR) 50 Ml”lon Llnes
Facebook (62M)

I Ay Future Combat System

Aborted (63 M) . )
100 Million Lines
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Car Software
Modern High End (100M)

2013 2014 2015 2016 2017 2014
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@ Cortical Processor Study

Study consists of 12 performers and runs from Q2 2015 to Q2 2016

MTO Cortical Processor Study investigates systems that:
« Eliminate the need for large training sets as a prerequisite to training
« Train in real time in an unsupervised or weakly supervised environment
« Recognize temporal as well as spatial patterns for recognition of action and anomalies
» Learn and perform inference over complex structure in data, scenarios

How: Leverage elements of computational neuroscience
« Spatial/temporal pattern recognition
« One shot learning — network re-use
« Efficient performance — sparsity and lower precision reduces HW requirements

What the program will do:

« Take image processing to the next level - systems that learn objects and actions from processing
video streams, with minimal labeled training data

» Model free adaptive control
» Performance = real-time learning
« Power and size constraints driving efficient use of hardware, specialized and/or custom
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Lateral inhibition leads to sparse activation and connectivity — creating
Sparse Distributed Representations (SDR)

« Results in a limited distribution sparse activation which, in hardware, can be
leveraged for significant efficiency

«  Combinatorics in our favor, e.g. 1000 neurons, 10 active at a time: 2.6x10%
possible representations

*  Only a small number of cells are required to recognize a pattern

Rapid learning — typically one shot - imprint sub-vector on patch of
dendritic tree
»  Hebb rule: neurons that fire together, wire together

* One variation is called One and a half shot learning, where there is some
adjustment of imprinted weights

« Synapses are only possible where axons and dendrites have some physical
proximity, providing a wide range of random segments — again combinatorics Spine ol
works in our favor Y/

Learning is fundamentally unsupervised Point

Supervised, weakly supervised, and reinforcement learning also possible

Weights and activations are typically low precision

« The expense is in representing and emulating connectivity, not in the

arithmetic
Temporal information is fundamental to neuron construction — delays
are ubiquitous in dendritic trees

+  Dendritic trees are active, pulse signals are amplified as they proceed to the A Schematic representation of

anonical pyramidal neuron
soma
L . . . . . "Pyramid_al neurons: d:andritic structure and
Sequence memory (predicting forward in time) is ubiquitous oo P hoao
«  HTM/CLA Numenta (Hawkins & Ahmad) (March 2008)
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DPA Computational Neuroscience 102

* Many models are spiking — which is very favorable for
hardware implementations (IBM TrueNorth)

«  Feedback as well as feed-forward pathways
*  Hypothesis reinforcement
« Saliency (directing attention)
«  Spatial and temporal dilation ascending the hierarchy

« Hierarchical SDRs may allow the efficient capture of and inference
over sparse graphs — the ability to capture complex, high level

structure Cell-type-specific 3D reconstruction of five neighboring barrel
. . . columns in rat vibrissal cortex (credit: Marcel Oberlaender et al.,
- IBM's Hierarchical Context Networks (Wilcke) Cerebral Cortex October 2012;22:2375¢2391)

« Close approximation to Bayesian inference

»  Cortical columns: tight intra and local inter column
connectivity, sparse longer range connectivity, creates a P Y
natural modular structure with more efficient connectivity ]

utilization o |
. Lo . relations with other
«  Systems built from more specialized cortical areas are now depth of e cona
starting to appear (Eliasmith) — Spaun Cortex
«  http://www.extremetech.com/extreme/141926-spaun-the-most-
realistic-artificial-human-brain-yet 5 [
+ Homeostasis % m )
- Goal is average activity; inactive neurons and synapses e e de  Input of information
continuously reduce threshold to insure uniform activity cortex fom: i Bisanis

«  Keeps all neurons and synapses in the game and actively learning
The Cortical Column: ;
recherche/ersidp/Projects/Cortical/Root.html
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DARPA

Sensor Fusion — Leverage Structure in Data

DoD sensor problems (Sensor streams can be gracefully added dynamically in the field)

Cortical-like algorithms have the potential to solve the most challenging

Sensor Data Fusion Sensor Applications
Audio . :
* Not possible with any il
neural algorithms today, v GRS Bt

nor with traditional

Link

techniques
ann Staging
* Creates the capability of .. 4 area
using learning to model e 3 s
g Cortex
and control complex Tl NIW\ s
systems Higher-order Visual Higher-order Audio Association
Stages (IT) Stages (HO-A) o
* Helps manage ’
signal and Surveillance imaging  Scenario awareness
system Complex structure
complexity by
automating
higher order

relationships

Tracking convoy of vehicles

Rinkus - Neurithmic

Visual Audio
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Activity @

Human pose
forehand shot smash @
O: N C“D Object
\ y “"Ojeﬁ e o o
Tennis Croquet Volleyball @ Body parts

racket mallet @ @ @

Intra-class variations

» More than one H for each A4; Image eVidenQe% #
 Unobserved during training. =~

/._; o

P: 1,: location; 6,: orientation; s,: scale. o
Yao and Fei-Fei, CVPR 2010
f:  Shape context. [Belongie et al, 2002]
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@ Mapping Bio-Inspired Algorithms to Hardware

Bio-inspired machine learning algorithms require matched hardware

1. High connectivity

Configurable / Adaptable
Sparse activity

e s

Conventional processors are a poor
match to cortical algorithms:
» Constrained: processor/memory
partition, limited parallelism

» Excessive: high precision, tiered caches,
complex instruction sets, pipelines, etc.

Local memory and parameter storage
Simple, low-precision computation

Custom architectures can leverage bio-
inspired approach:
« High-risk exotic devices unnecessary

» Utilize conventional CMOS fabrication optimized
for neuro architecture/computational model

« (Can benefit from latest advances in CMOS

Conventional Solutions

Bio-inspired Algorithms

Specialized cortical processor
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