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The Unconventional Processing of Signals 
for Intelligent Data Exploitation (UPSIDE) Program 

Large coordinated multi-disciplinary teams with multiple subs 
Two teams using neural-inspired solutions 

  BAE Systems 
  University of Massachusetts 
  Johns Hopkins 
  UCSB 
  Stony Brook University 
  SEMATECH 

    

University of Michigan   
Portland State University 
New Mexico Consortium, Los Alamos National 

Lab 

  HRL Laboratories, LLC 
  Purdue University 
  University of Notre Dame 
  University of Pittsburgh 
  Intel Corp. 
  NIST 

 
   
  

The University of Tennessee 
Oak Ridge National Laboratory 
Stanford University.   
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UPSIDE: Performance Goals 
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UPSIDE: Mixed Signal CMOS 

UPSIDE: Emerging Device 

COTS Efficiency Ceiling 
 

~100 Ops/nsec 
consuming µwatts 

DoD Sensing Requirements (N
otional) 

Processor Capability 

UPSIDE Goals: 3 orders of magnitude in throughput, 4 orders of magnitude in 
power efficiency, no loss in accuracy 
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UPSIDE  Unconventional Processing of Signals for Data Exploitation 

Front End Filtering 
(Edge Detection) 

Image feature 
from CCD array 

Pixels mapped into      
coupled oscillators 

3x3 pixels 

Oscillators relax to 
lowest energy state  

Final energy compared against 
library of possible features 

E1= 

E2= 

E3= 

E4= 

Best Match: Ex=E3 

Step and repeat to Identify 
all Edges (in red) 

DARPA Insight #1: Exploit the physics of emerging devices and mixed signal CMOS  
to perform extremely fast, low power computation.  

UPSIDE eliminates computationally intensive digital CMOS dot product multiplication 

Final Result: 
Filtered Image 

Emin=Ex 

DARPA Insight #2: Computational method can be applied universally to almost every 
computing function in the front end of the Image Processing Pipeline 

Object Detection Object Saliency/Tracking 

BAE Systems – ARGUS IS 
Dismount  
Cars 

Object Classification 

Reduce ISR computational power budget from kW to W, while increasing speed >100x 

Approach is being implemented in MS CMOS for near term gains 

DARPA Neovision2 – 
Stanford Tower Video 
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UPSIDE ARGUS-IS Image Processing Pipeline: 40GP/s, 5W 

Micrograph of 12x12  
Mermistor Array 

• First demo of this kind 
• Physical memristor  
  x-bar implementation 
• 3x3 binary input images 
• 4 classes (X,I,C,V)  

Fabricated and tested on May 14 
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Source coupled VMM 

NUC/Debayer 

NVM Tape-out  #2:June 10th- 
successfully tested 

Symmetric 
FGMOS 
device to be 
used in 
analog NVM 
circuits 

65 nm UCE includes computing 
with capacitor arrays 

1.56 µm 

1.92 µm 

Modified 
commercial NVM 
memory 
technology: 
>500x density 
advantage over 
state-of-the-art 

1000x more power efficient 
100x faster 

“Training and operation of 
an integrated neuromorphic 

network based on 
metal-oxide memristors”, 

M. Prezioso et al., 
Nature Letter, 

7 May 2015, Vol. 521 

Johns Hopkins 
Neuromorphic 

Circuits 
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Sparse Adaptive Local Learning: A universal platform for 
efficient sensing and analytics (U Michigan) 

LCA 

Neural 
Inference 
Module 

Gar Kenyon 
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Mapping The Neural Inference Module Onto 
A Low-power Sparse Coding Processor 

Zhengya Zhang 
Michael Flynn 



Distribution Statement A: Approved for Public Release, Distribution Unlimited 8 

Mapping IM onto Memristor-Based Hardware 

Wei Lu 
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Results: Emerging Device Characteristics 

Spin-Torque Oscillator (STO)  

Resonant Body Oscillator (RBO)  

Parameter Simulated Measured Projected 
Power consumption per STO 45 !W 100 !W 

(10mv, 10 ma) 
10 !W (10mV, 1mA) 

Power consumption, 16 STOs   360 !W 
Nanocontact size  100 nm 40 nm 

Time to phaselock, 2 STOs  3-5 ns 3-5 ns 2.5 ns 
Frequency  1-40 GHz 10-40GHz 

(CMOS dependent) 
Footprint , unit cell 2 STOs + resistive coupling   1 x 5 µm2 
Footprint, 16 RBO cluster   2 x 20 µm2 

 
 
 

Emerging device specifications indicate that both power and frequency 
data are near the projected values for UPSIDE program goal. 
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Deep Learning Analog Chip 

Deep Learning Chip Architecture Implemented with Custom 
Analog Elements  
•  Floating-gate analog memory for non-Boolean, probabilistic pattern 

matching performing on-chip, real-time training 
•  Approach enables highly efficient computation for object recognition, 

classification and tracking 
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Measured
Baseline

UPSIDE Chip Performance 
Training Efficiency 

Digital Design UPSIDE Chip 
1.7 GOPS/W 480 GOPS/W 

282x Improvement 

Performance & Efficiency 
Accuracy comparable to s/w, with 
282x lower training energy 
than synthesized custom digital 
equivalent. 

Analog DeSTIN Engine Classification  
Result Input Pattern 

Rich  
Features 

NN Classifier 

Raw Data 
J. Lu, S. Young, I. Arel, J. Holleman, "A 1TOPS/W Analog 
Deep Machine-Learning Engine with Floating-Gate 
Storage in 0.13um CMOS," IEEE Journal of Solid-State 
Circuits, Vol. 50, Issue 1, pp. 270-281, Jan. 2015. 



•  Sensor data bandwidth exceeding processing capabilities, particularly for embedded 
systems 

•  Data become more knowledge / context intensive, containing both spatial and 
temporal information, as they move through the pipeline 

•  Current computational approaches do not adequately represent complex spatial and 
temporal data, limiting the ability to effectively perform complex recognition for 
important DoD tasks like anomaly detection and scenario prediction 

Sensor Processing Pipeline: A Data Analysis Crisis 

Front-End 
Signal 

Processing 

Feature 
Extraction 

Higher-Order 
Feature 

Extraction 

Association 
Inference 

Decision 
Making 

The “Front End” 
UPSIDE Program 

The “Back End” 
Cortical Processor 

Sensor 
Output 

Actionable Data/ 
Motor Control 
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Drowning in data, 
starved for knowledge 
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Explosion of Data and Software Complexity 

1 Million Lines Space Shuttle (400,000) 

10 Million Lines 

50 Million Lines 

100 Million Lines 

F22 Raptor Fighter (2M) 

Hubble Space Telescope (2M) 

Us Military Drone Control Software (4M) 

F35 Fighter 2013 (24M) 

Army Future Combat System  
Aborted (63 M) 

Car Software  
Modern High End (100M) 

Average iPhone App (40,000) 

Software System Codebases DoD Sensing: A single 
Global Hawk requires 
500 Mbps à 5x the total 
SatCom bandwidth that 
the entire U.S. military 
used during the Gulf 
War 

Global Hawk 

Can learning be leveraged as an efficient system construction 
alternative, for system control as well as data processing? 
•  Expose the agent to reality rather than trying to approximate it through 

programmed equations 
•  Learn complex and subtle relationships in the data and perform inference over 

those structures Rich models allow more robust anomaly detection 
•  Continue learning and adaptation in situ 

2012-2017 © Cisco Global Cloud Index 

Big Data: Global Data Center Traffic Projection 

Facebook (62M) 

2014 
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•  Study consists of 12 performers and runs from Q2 2015 to Q2 2016 

•  MTO Cortical Processor Study investigates systems that: 
•  Eliminate the need for large training sets as a prerequisite to training 
•  Train in real time in an unsupervised or weakly supervised environment 
•  Recognize temporal as well as spatial patterns for recognition of action and anomalies 
•  Learn and perform inference over complex structure in data, scenarios 

•  How: Leverage elements of computational neuroscience 
•  Spatial/temporal pattern recognition 
•  One shot learning – network re-use 
•  Efficient performance – sparsity and lower precision reduces HW requirements 

•  What the program will do: 
•  Take image processing to the next level - systems that learn objects and actions from processing 

video streams, with minimal labeled training data 
•  Model free adaptive control 
•  Performance = real-time learning 
•  Power and size constraints driving efficient use of hardware, specialized and/or custom 

Cortical Processor Study 
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Computational Neuroscience 101 

•  Lateral inhibition leads to sparse activation and connectivity – creating 
Sparse Distributed Representations (SDR) 

•  Results in a limited distribution sparse activation which, in hardware, can be 
leveraged for significant efficiency 

•  Combinatorics in our favor, e.g. 1000 neurons, 10 active at a time: 2.6x1023 
possible representations 

•  Only a small number of cells are required to recognize a pattern 

•  Rapid learning – typically one shot - imprint sub-vector on patch of 
dendritic tree 

•  Hebb rule: neurons that fire together, wire together 
•  One variation is called One and a half shot learning, where there is some 

adjustment of imprinted weights 
•  Synapses are only possible where axons and dendrites have some physical 

proximity, providing a wide range of random segments – again combinatorics 
works in our favor 

•  Learning is fundamentally unsupervised 
Supervised, weakly supervised, and reinforcement learning also possible 

•  Weights and activations are typically low precision 
•  The expense is in representing and emulating connectivity, not in the 

arithmetic 

•  Temporal information is fundamental to neuron construction – delays 
are ubiquitous in dendritic trees 

•  Dendritic trees are active, pulse signals are amplified as they proceed to the 
soma 

•  Sequence memory (predicting forward in time) is ubiquitous 
•  HTM/CLA Numenta (Hawkins & Ahmad) 

"Pyramidal neurons: dendritic structure and 
synaptic integration", Nelson Spruston, 

Nature Reviews Neuroscience 9, 206-221 
(March 2008) 
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Computational Neuroscience 102 

•  Many models are spiking – which is very favorable for 
hardware implementations (IBM TrueNorth) 

•  Feedback as well as feed-forward pathways 
•  Hypothesis reinforcement 
•  Saliency (directing attention) 
•  Spatial and temporal dilation ascending the hierarchy 
•  Hierarchical SDRs may allow the efficient capture of and inference 

over sparse graphs – the ability to capture complex, high level 
structure 

•  IBM’s Hierarchical Context Networks (Wilcke) 

•  Close approximation to Bayesian inference 
•  Cortical columns: tight intra and local inter column 

connectivity, sparse longer range connectivity, creates a 
natural modular structure with more efficient connectivity 
utilization 

•  Systems built from more specialized cortical areas are now 
starting to appear (Eliasmith) – Spaun 

•  http://www.extremetech.com/extreme/141926-spaun-the-most-
realistic-artificial-human-brain-yet 

•  Homeostasis 
•  Goal is average activity; inactive neurons and synapses 

continuously reduce threshold to insure uniform activity 
•  Keeps all neurons and synapses in the game and actively learning 

Cell-type-specific 3D reconstruction of five neighboring barrel 
columns in rat vibrissal cortex (credit: Marcel Oberlaender et al., 
Cerebral Cortex October 2012;22:2375±2391) 

The Cortical Column: http://www.metz.supelec.fr/metz/ 
recherche/ersidp/Projects/Cortical/Root.html 
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Sensor Fusion – Leverage Structure in Data 

•  Not possible with any 
neural algorithms today, 
nor with traditional 
techniques 

•  Creates the capability of 
using learning to model 
and control complex 
systems 

Surveillance imaging Scenario awareness 
Complex structure 

Sensor Data Fusion 

time 

Tracking convoy of vehicles 

•  Helps manage 
signal and 
system 
complexity by 
automating 
higher order 
relationships 

Sensor Applications 

Cortical-like algorithms have the potential to solve the most challenging 
DoD sensor problems (Sensor streams can be gracefully added dynamically in the field) 
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Structure in Data 



Mapping Bio-Inspired Algorithms to Hardware 

Bio-inspired machine learning algorithms require matched hardware 
1.  High connectivity 
2.  Local memory and parameter storage 
3.  Simple, low-precision computation 
4.  Configurable / Adaptable 
5.  Sparse activity 

 

Bio-inspired Algorithms Specialized cortical processor 

Custom architectures can leverage bio-
inspired approach: 

•  High-risk exotic devices unnecessary 
•  Utilize conventional CMOS fabrication optimized 

for neuro architecture/computational model 
•  Can benefit from latest advances in CMOS 

Conventional processors are a poor 
match to cortical algorithms: 

•  Constrained: processor/memory 
partition, limited parallelism 

•  Excessive: high precision, tiered caches, 
complex instruction sets, pipelines, etc. 

Conventional Solutions 
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