UPSIDE / Cortical Processor Study

Dr. Dan Hammerstrom Program Manager / MTO

The Unconventional Processing of Signals for Intelligent Data Exploitation (UPSIDE) Program

Large coordinated multi-disciplinary teams with multiple subs Two teams using neural-inspired solutions

BAE Systems

University of Massachusetts Johns Hopkins UCSB Stony Brook University SEMATECH

HRL Laboratories, LLC

Purdue University University of Notre Dame University of Pittsburgh Intel Corp. NIST

University of Michigan

Portland State University New Mexico Consortium, Los Alamos National Lab

The University of Tennessee

Oak Ridge National Laboratory Stanford University.

UPSIDE: Performance Goals

UPSIDE Goals: **3** orders of magnitude in throughput, **4** orders of magnitude in power efficiency, no loss in accuracy

DARPA UPSIDE Unconventional Processing of Signals for Data Exploitation

DARPA Insight #1: Exploit the physics of emerging devices and mixed signal CMOS to perform extremely fast, low power computation.

Final Result: Filtered Image

Step and repeat to Identify all Edges (in red)

UPSIDE eliminates computationally intensive digital CMOS dot product multiplication

DARPA Neovision2 Stanford Tower Video

DARPA Insight #2: Computational method can be applied universally to almost every computing function in the front end of the Image Processing Pipeline

> Object Detection Object Saliency/Tracking Object Classification

Reduce ISR computational power budget from kW to W, while increasing speed >100x

UPSIDE ARGUS-IS Image Processing Pipeline: 40GP/s, 5W

Sparse Adaptive Local Learning: A universal platform for efficient sensing and analytics (U Michigan)

Mapping The Neural Inference Module Onto A Low-power Sparse Coding Processor

Inference throughput: 1.24 Gpixels/s Learning throughput: 188 Mpixels/s

Energy: as low as 47.6 pJ/pixel

Sparse coding chip

Zhengya Zhang Michael Flynn

Evaluation board

Microphotograph

- Low spike rate translates to low power consumption
- Efficient sharing of neuron communication enables scalable architecture
- Excellent quantized performance for efficient memory usage
- Soft processing and error resilient for low power approximate computing

Work performed under DARPA Cooperative Agreement Award HR0011-13-2-0015

Mapping IM onto Memristor-Based Hardware

Results: Emerging Device Characteristics

Emerging device specifications indicate that both power and frequency data are near the projected values for UPSIDE program goal.

Spin-Torque Oscillator (STO)

Parameter	Simulated	Measured	Projected
Power consumption per STO	45 μW	100 μW (10mv, 10 ma)	10 μW (10mV, 1mA)
Power consumption, 16 STOs			360 μW
Nanocontact size		100 nm	40 nm
Time to phaselock, 2 STOs	3-5 ns	3-5 ns	2.5 ns
Frequency		1-40 GHz	10-40GHz
			(CMOS dependent)
Footprint, unit cell 2 STOs + resistive coupling			$1 \times 5 \mu m^2$
Footprint, 16 RBO cluster			$2 \times 20 \mu m^2$

Resonant Body Oscillator (RBO)

Parameter	Simulated	Measured	Projected
Power consumption per RBO	22.5 μW		20 μW
Power consumption, 16 RBOs			360 μW
Energy dissipated in coupling resistance, 2 RBOs, anti-phase	99 aJ		
to in-phase transient			
Energy dissipated in coupling resistances, 16 RBOs, anti-			1.6fJ
phase to in-phase transient			
Time to phaselock, 2 RBOs anti-phase to in-phase transient	33 ns		3.3ns
Frequency	1-10 GHz	11.1GHz	10GHz
Footprint, unit cell 2 RBOs + resistive coupling	$40 \times 40 \mu m^2$		
Footprint, 16 RBO cluster			80x160 μm ²

Deep Learning Analog Chip

Deep Learning Chip Architecture Implemented with Custom Analog Elements

- Floating-gate analog memory for non-Boolean, probabilistic pattern matching performing on-chip, real-time training
- Approach enables highly efficient computation for object recognition, classification and tracking

J. Lu, S. Young, I. Arel, J. Holleman, "A 1TOPS/W Analog Deep Machine-Learning Engine with Floating-Gate Storage in 0.13um CMOS," IEEE Journal of Solid-State Circuits, Vol. 50, Issue 1, pp. 270-281, Jan. 2015.

Performance & Efficiency

Accuracy comparable to s/w, with **282x lower training energy** than synthesized custom digital equivalent.

UPSIDE Chip Performance		
Training Efficiency		
Digital Design	UPSIDE Chip	
1.7 GOPS/W	480 GOPS/W	
282x Improvement		

Sensor Processing Pipeline: A Data Analysis Crisis

- Sensor data bandwidth exceeding processing capabilities, particularly for embedded systems
- Data become more knowledge / context intensive, containing both spatial and temporal information, as they move through the pipeline
- Current computational approaches do not adequately represent complex spatial and temporal data, limiting the ability to effectively perform complex recognition for important DoD tasks like anomaly detection and scenario prediction

Explosion of Data and Software Complexity

Can learning be leveraged as an efficient system construction alternative, for system control as well as data processing?

- Expose the agent to reality rather than trying to approximate it through programmed equations
- Learn complex and subtle relationships in the data and perform inference over those structures Rich models allow more robust anomaly detection
- Continue learning and adaptation in situ

Global Hawk

DoD Sensing: A single Global Hawk requires 500 Mbps \rightarrow 5x the total SatCom bandwidth that the entire U.S. military used during the Gulf War

Big Data: Global Data Center Traffic Projection

Software System Codebases

- Average iPhone App (40,000)
- Space Shuttle (400,000)
 - F22 Raptor Fighter (2M)
- Hubble Space Telescope (2M)
- Us Military Drone Control Software (4M)

10 Million Lines

1 Million Lines

F35 Fighter 2013 (24M)

50 Million Lines

Facebook (62M)

Army Future Combat System Aborted (63 M)

100 Million Lines

Car Software

2014

Modern High End (100M)

Cortical Processor Study

- Study consists of 12 performers and runs from Q2 2015 to Q2 2016
- MTO Cortical Processor Study investigates systems that:
 - Eliminate the need for large training sets as a prerequisite to training
 - Train in real time in an unsupervised or weakly supervised environment
 - Recognize temporal as well as spatial patterns for recognition of action and anomalies
 - Learn and perform inference over complex structure in data, scenarios
- How: Leverage elements of computational neuroscience
 - Spatial/temporal pattern recognition
 - One shot learning network re-use
 - Efficient performance sparsity and lower precision reduces HW requirements
- What the program will do:
 - Take image processing to the next level systems that learn objects and actions from processing video streams, with minimal labeled training data
 - Model free adaptive control
 - Performance = real-time learning
 - Power and size constraints driving efficient use of hardware, specialized and/or custom

Computational Neuroscience 101

- Lateral inhibition leads to sparse activation and connectivity creating Sparse Distributed Representations (SDR)
 - Results in a limited distribution sparse activation which, in hardware, can be leveraged for significant efficiency
 - Combinatorics in our favor, e.g. 1000 neurons, 10 active at a time: 2.6x10²³ possible representations
 - Only a small number of cells are required to recognize a pattern
- Rapid learning typically one shot imprint sub-vector on patch of dendritic tree
 - Hebb rule: neurons that fire together, wire together
 - One variation is called One and a half shot learning, where there is some adjustment of imprinted weights
 - Synapses are only possible where axons and dendrites have some physical proximity, providing a wide range of random segments – again combinatorics works in our favor
- Learning is fundamentally unsupervised
 Supervised, weakly supervised, and reinforcement learning also possible
- Weights and activations are typically low precision
 - The expense is in representing and emulating connectivity, not in the arithmetic
- Temporal information is fundamental to neuron construction delays are ubiquitous in dendritic trees
 - Dendritic trees are active, pulse signals are amplified as they proceed to the soma
- Sequence memory (predicting forward in time) is ubiquitous
 - HTM/CLA Numenta (Hawkins & Ahmad)

A Schematic representation of canonical pyramidal neuron

"Pyramidal neurons: dendritic structure and synaptic integration", Nelson Spruston, Nature Reviews Neuroscience 9, 206-221

(March 2008)

Computational Neuroscience 102

- Many models are spiking which is very favorable for hardware implementations (IBM TrueNorth)
- Feedback as well as feed-forward pathways
 - Hypothesis reinforcement
 - Saliency (directing attention)
 - Spatial and temporal dilation ascending the hierarchy
 - Hierarchical SDRs may allow the efficient capture of and inference over sparse graphs – the ability to capture complex, high level structure
 - IBM's Hierarchical Context Networks (Wilcke)
- Close approximation to Bayesian inference
- Cortical columns: tight intra and local inter column connectivity, sparse longer range connectivity, creates a natural modular structure with more efficient connectivity utilization
- Systems built from more specialized cortical areas are now starting to appear (Eliasmith) – Spaun
 - http://www.extremetech.com/extreme/141926-spaun-the-mostrealistic-artificial-human-brain-yet

Homeostasis

- Goal is average activity; inactive neurons and synapses continuously reduce threshold to insure uniform activity
- Keeps all neurons and synapses in the game and actively learning

Cell-type-specific 3D reconstruction of five neighboring barrel columns in rat vibrissal cortex (credit: Marcel Oberlaender et al., Cerebral Cortex October 2012;22:2375±2391)

The Cortical Column: http://www.metz.supelec.fr/metz/recherche/ersidp/Projects/Cortical/Root.html

Sensor Fusion – Leverage Structure in Data

Cortical-like algorithms have the potential to solve the most challenging DoD sensor problems (Sensor streams can be gracefully added dynamically in the field)

Structure in Data

P: l_p : location; θ_p : orientation; s_p : scale.

Unobserved during training.

f: Shape context. [Belongie et al, 2002]

Yao and Fei-Fei, CVPR 2010

Mapping Bio-Inspired Algorithms to Hardware

Bio-inspired machine learning algorithms require matched hardware

- High connectivity
- Local memory and parameter storage
- 3. Simple, low-precision computation
- Configurable / Adaptable
- 5. Sparse activity

Conventional processors are a poor match to cortical algorithms:

- Constrained: processor/memory partition, limited parallelism
- Excessive: high precision, tiered caches, complex instruction sets, pipelines, etc.

Conventional Solutions

Custom architectures can leverage bioinspired approach:

- High-risk exotic devices unnecessary
- Utilize conventional CMOS fabrication optimized for neuro architecture/computational model
- Can benefit from latest advances in CMOS

Bio-inspired Algorithms

Specialized cortical processor